§ 29.1191 - (e) Each shutoff valve and its control must be designed, located, and protected to function properly under any condition likely to result from fire in a designated fire zone. - (f) Except for ground-use-only auxiliary power unit installations, there must be means to prevent inadvertent operation of each shutoff and to make it possible to reopen it in flight after it has been closed. [Doc. No. 5084, 29 FR 16150, Dec. 3, 1964, as amended by Amdt. 29–12, 41 FR 55473, Dec. 20, 1976; Amdt. 29–22, 49 FR 6850, Feb. 23, 1984; Amdt. 29–26, 53 FR 34219, Sept. 2, 1988] #### §29.1191 Firewalls. - (a) Each engine, including the combustor, turbine, and tailpipe sections of turbine engine installations, must be isolated by a firewall, shroud, or equivalent means, from personnel compartments, structures, controls, rotor mechanisms, and other parts that are— - (1) Essential to controlled flight and landing; and - (2) Not protected under § 29.861. - (b) Each auxiliary power unit, combustion heater, and other combustion equipment to be used in flight, must be isolated from the rest of the rotorcraft by firewalls, shrouds, or equivalent means. - (c) Each firewall or shroud must be constructed so that no hazardous quantity of air, fluid, or flame can pass from any engine compartment to other parts of the rotorcraft. - (d) Each opening in the firewall or shroud must be sealed with close-fitting fireproof grommets, bushings, or firewall fittings. - (e) Each firewall and shroud must be fireproof and protected against corrosion. - (f) In meeting this section, account must be taken of the probable path of a fire as affected by the airflow in normal flight and in autorotation. [Doc. No. 5084, 29 FR 16150, Dec. 3, 1964, as amended by Amdt. 29–3, 33 FR 970, Jan. 26, 1968] # § 29.1193 Cowling and engine compartment covering. (a) Each cowling and engine compartment covering must be constructed and supported so that it can resist the vi- bration, inertia, and air loads to which it may be subjected in operation. - (b) Cowling must meet the drainage and ventilation requirements of §29.1187. - (c) On rotorcraft with a diaphragm isolating the engine power section from the engine accessory section, each part of the accessory section cowling subject to flame in case of fire in the engine power section of the powerplant must— - (1) Be fireproof; and - (2) Meet the requirements of §29.1191. - (d) Each part of the cowling or engine compartment covering subject to high temperatures due to its nearness to exhaust system parts or exhaust gas impingement must be fireproof. - (e) Each rotorcraft must- - (1) Be designated and constructed so that no fire originating in any fire zone can enter, either through openings or by burning through external skin, any other zone or region where it would create additional hazards: - (2) Meet the requirements of paragraph (e)(1) of this section with the landing gear retracted (if applicable); and - (3) Have fireproof skin in areas subject to flame if a fire starts in or burns out of any designated fire zone. - (f) A means of retention for each openable or readily removable panel, cowling, or engine or rotor drive system covering must be provided to preclude hazardous damage to rotors or critical control components in the event of— - (1) Structural or mechanical failure of the normal retention means, unless such failure is extremely improbable; - (2) Fire in a fire zone, if such fire could adversely affect the normal means of retention. (Secs. 313(a), 601, and 603, 72 Stat. 759, 775, 49 U.S.C. 1354(a), 1421, and 1423; sec. 6(c), 49 U.S.C. 1655(c)) [Doc. No. 5084, 29 FR 16150, Dec. 3, 1964, as amended by Amdt. 29–3, 33 FR 970, Jan. 26, 1968; Amdt. 29–13, 42 FR 15046, Mar. 17, 1977; Amdt. 29–26, 53 FR 34219, Sept. 2, 1988] ## § 29.1194 Other surfaces. All surfaces aft of, and near, engine compartments and designated fire ## Federal Aviation Administration, DOT zones, other than tail surfaces not subject to heat, flames, or sparks emanating from a designated fire zone or engine compartment, must be at least fire resistant. [Amdt. 29-3, 33 FR 970, Jan. 26, 1968] ### §29.1195 Fire extinguishing systems. - (a) Each turbine engine powered rotorcraft and Category A reciprocating engine powered rotorcraft, and each Category B reciprocating engine powered rotorcraft with engines of more than 1,500 cubic inches must have a fire extinguishing system for the designated fire zones. The fire extinguishing system for a powerplant must be able to simultaneously protect all zones of the powerplant compartment for which protection is provided. - (b) For multiengine powered rotor-craft, the fire extinguishing system, the quantity of extinguishing agent, and the rate of discharge must— - (1) For each auxiliary power unit and combustion equipment, provide at least one adequate discharge; and - (2) For each other designated fire zone, provide two adequate discharges. - (c) For single engine rotorcraft, the quantity of extinguishing agent and the rate of discharge must provide at least one adequate discharge for the engine compartment. - (d) It must be shown by either actual or simulated flight tests that under critical airflow conditions in flight the discharge of the extinguishing agent in each designated fire zone will provide an agent concentration capable of extinguishing fires in that zone and of minimizing the probability of reignition. (Secs. 313(a), 601, 603, 604, Federal Aviation Act of 1958 (49 U.S.C. 1354(a), 1421, 1423, 1424), sec. 6(c), Dept. of Transportation Act (49 U.S.C. 1655(c))) [Doc. No. 5084, 29 FR 16150, Dec. 3, 1964, as amended by Amdt. 29–3, 33 FR 970, Jan. 26, 1968; Amdt. 29–13, 42 FR 15047, Mar. 17, 1977; Amdt. 29–17, 43 FR 50602, Oct. 30, 1978] ## §29.1197 Fire extinguishing agents. - (a) Fire extinguishing agents must- - (1) Be capable of extinguishing flames emanating from any burning of fluids or other combustible materials in the area protected by the fire extinguishing system; and - (2) Have thermal stability over the temperature range likely to be experienced in the compartment in which they are stored. - (b) If any toxic extinguishing agent is used, it must be shown by test that entry of harmful concentrations of fluid or fluid vapors into any personnel compartment (due to leakage during normal operation of the rotorcraft, or discharge on the ground or in flight) is prevented, even though a defect may exist in the extinguishing system. (Secs. 313(a), 601, and 603, 72 Stat. 759, 775, 49 U.S.C. 1354(a), 1421, and 1423; sec. 6(c), 49 U.S.C. 1655(c)) [Doc. No. 5084, 29 FR 16150, Dec. 3, 1964, as amended by Amdt. 29–12, 41 FR 55473, Dec. 20, 1976; Amdt. 29–13, 42 FR 15047, Mar. 17, 1977] ## § 29.1199 Extinguishing agent containers. - (a) Each extinguishing agent container must have a pressure relief to prevent bursting of the container by excessive internal pressures. - (b) The discharge end of each discharge line from a pressure relief connection must be located so that discharge of the fire extinguishing agent would not damage the rotocraft. The line must also be located or protected to prevent clogging caused by ice or other foreign matter. - (c) There must be a means for each fire extinguishing agent container to indicate that the container has discharged or that the charging pressure is below the established minimum necessary for proper functioning. - (d) The temperature of each container must be maintained, under intended operating conditions, to prevent the pressure in the container from— - (1) Falling below that necessary to provide an adequate rate of discharge; or - (2) Rising high enough to cause premature discharge. (Secs. 313(a), 601, and 603, 72 Stat. 759, 775, 49 U.S.C. 1354(a), 1421, and 1423; sec. 6(c), 49 U.S.C. 1655(c)) [Doc. No. 5084, 29 FR 16150, Dec. 3, 1964, as amended by Amdt. 29–13, 42 FR 15047, Mar. 17, 1977]